

TIVAR® TECH

Plástico semicristalino, esta cualidad de PE-UHMW con un porcentaje extremadamente elevado de polimerización, incluye MoS2 (bisulfuro de molibdeno), resultando en un material con resistencia al desgaste mejorada y propiedades de deslizamiento superiores a las de TIVAR® 1000. El coeficiente de fricción disminuye con el aumento de la presión de contacto. TIVAR® TECH se usa en aplicaciones con cargas elevadas y en las que es necesario trabajar en seco.

PRINCIPALES CARACTERÍSTICAS

- Autolubricante
- Coeficiente de fricción muy bajo
- Elevada resistencia al desgaste
- Elevada resistencia al impacto
- Excelente resistencia química
- Muy buena absorción del ruido e impacto
- No absorbe humedad
- Buenas propiedades de deslizamiento

APLICACIONES

- Carretes para cadenas y discos de engranajes
- Componentes de deslizamiento
- Casquillos en aparatos de tracción por cable
- Guías de rodillos
- Componentes deslizantes para ascensores de esquí y teleféricos
- Ruedas dentadas

FICHA TÉCNICA

PROPRIEDADES	MÉTODOS DE PRUEBA	UNIDADES	TIVAR® TECH
COLOR		-	GRIS OSCURO
DENSIDAD	ISO 1183-1	g/cm³	0.935
PESO MOLECULAR	-	10 ⁶ g/mol	9
ABSORCIÓN DE AGUA A 23°C HASTA LA SATURACIÓN¹	-	%	< 0.1
TEMPERATURA DE FUSIÓN (DSC, 10°C/MIN)	ISO 11357-1/-3	°C	135
CONDUCTIVIDAD TÉRMICA A 23°C	-	W/(K.m)	0.40
COEFICIENTE DE EXPANSIÓN TÉRMICA LINEAL			
ENTRE 23-100°C	-	M/(m.K)	200 x 10 ⁻⁶
TEMPERATURA MÁXIMA DE OPERACIÓN EN EL AIRE			
PARA CORTOS PERIODOS ³	-	°C	120
CONTINUAMENTE: PARA 20 000H ⁴		٥C	80
TEMPERATURA MÍNIMA DE OPERACIÓNS	-	°C	-150
TEMPERATURA DE DEFORMACIÓN BAJO CARGA			
MÉTODO A: 1.8 MPa	ISO 75-1/-2	°C	42
TEMPERATURA DE ABLANDAMIENTO VICAT - VST/B50	ISO 306	°C	80
INFLAMABILIDAD ⁶	-		
"ÍNDICE DE OXÍGENO"	ISO 4589-1/-2	%	<20
SEGÚN LA NORMA UL94 (6 MM DE ESPESOR)	-	-	НВ
PRUEBA DE TRACCIÓN ⁸			
RESISTENCIA A LA TRACCIÓNº	ISO 527-1/-2	MPa	19
RESISTENCIA A LA TRACCIÓN EN LA RUPTURA	ISO 527-1/-2	%	>50
MÓDULO DE ELASTICIDAD ¹⁰	ISO 527-1/-2	MPa	725
PRUEBA DE COMPRESIÓN¹¹			
RESISTENCIA A 1/2/5 % DE DEFORMACIÓN NOMINAL ¹⁰	ISO 604	MPa	6.5/10.5/17
RESISTENCIA AL IMPACTO DE CHARPY SIN ENTALLE ¹²	ISO 179-1/1eU	KJ/m²	s/ FRATUR
RESISTENCIA AL IMPACTO DE CHARPY CON ENTALLE	ISO 179-1/1eA	KJ/m²	105P
RESISTENCIA AL IMPACTO DE CHARPY CON DOBLE ENTALLE DE 14º13	ISO 11542-2	KJ/m²	120
DUREZA POR BOLA DE ACERO ¹⁴	ISO 2039-1	N/mm²	32
DUREZA SHORE D (15 S) ¹⁴	ISO 868	-	59
RIGIDEZ ELÉCTRICA ¹⁵	IEC 60243-1	kV/mm	45
RESISTIVIDAD VOLUMÉTRICA	IEC 60093	Ohm.cm	> 1014
RESISTIVIDAD SUPERFICIAL	IEC 60093	Ohm	> 1012
PERMEABILIDAD RELATIVA ε _r : A 100HZ	IEC 60250	-	-
PERMEABILIDAD RELATIVA ε _r : A 1MHZ	IEC 60250	-	
FACTOR DE DISIPACIÓN DIELÉCTRICA TAN δ: A 100HZ	IEC 60250	-	-
FACTOR DE DISIPACIÓN DIELÉCTRICA TAN δ: A 1MHZ	IEC 60250	-	-
ÍNDICE DE SEGUIMIENTO COMPARATIVO (CTI)	IEC 60112		

NOTA: 1 g/cm 3 = 1000 kg/m 3 ; 1 MPa = 1 N/mm 2 ; 1 KV/mm = 1 MV/m

(1) Medido en fragmentos de 1 mm. (2) Solo para periodos de corta exposición (pocas horas) en aplicaciones en las que se aplica poco o ningún peso al material.

(3) Temperatura a la que resiste durante un periodo mínimo de 20 000 horas. Tras este periodo de tiempo, existe una disminución de aproximadamente un 50 % en la resistencia a la tracción, comparado con el valor original. Los valores de la temperatura dados se basan en la degradación por oxidación térmica que sucede y que provoca una reducción de las propiedades. Mientras tanto, la temperatura máxima de operación permitida depende, en muchos casos, principalmente de la deducción y la magnitud de los esfuerzos mecánicos a los que está sometido el material. (4) Como la resistencia al impacto disminuye con la reducción de la temperatura, la temperatura mínima de operación permitida se determina a través de la extensión de impacto al que está sometido el material. Los valores dados se basan en condiciones de impacto desfavorables y, por ello, no se pueden considerar como los límites absolutos. (5) Estas valoraciones derivan de las especificaciones técnicas de los fabricantes de las materias primas, no permitiendo determinar el comportamiento de los materiales en condiciones de fuego. (6) La mayoría de las figuras dadas por las propiedades mecánicas de los materiales extrudidos son valores medios de las pruebas realizadas a placas con 30 mm de espesor. (7) Prueba a fragmentos: tipo 18. (8) Prueba de velocidad: 50 mm/min. (9) Prueba de velocidad: 1 mm/min. (10) Prueba a fragmentos: cilindros ø 8x16 mm. (11) prueba a fragmentos: barras 4 x 10 x 80 mm; prueba de velocidad: 2mm/min. (12) Péndulo usado: 151. (13) Medido en fragmentos de 10 mm de espesor.