

PTFE CON CARGAS

Las ventajas mostradas por los compuestos de PTFE con cargas, comparado con las resinas sin cargas, son las propiedades de la fórmula de la carga, es decir, las propiedades del material añadido. Por ejemplo, la resistencia al desgaste puede llegar a ser más de 1000 veces superior a la de PTFE virgen. Entre otras ventajas se destaca la mejoría de la resistencia a la deformación inicial y a la fluidez, el aumento de la rigidez y de la estabilidad dimensional con la temperatura y un ligero aumento de la dureza.

PTFE + Carbono Grafito

Usado normalmente para aplicaciones químicas y mecánicas. El grafito reduce el desgaste inicial y refuerza el compuesto de PTFE. PTFE + Grafito tiene una elevada conductividad térmica y elevada resistencia al desgaste a cargas elevadas. Recomendado para sellado de pistones y otras juntas dinámicas.

PTFE + Fibra de vidrio

Es la carga más usada y la que modifica menos las propiedades químicas y eléctricas de PTFE, mejorando de forma única las características mecánicas. Aumenta ligeramente el coeficiente de fricción, ya que aumenta de forma considerable la resistencia al desgaste y a cargas elevadas. Recomendado para piezas estructurales y bolas de sellado.

PTFE + Bronce

Las cargas de bronce mejoran las características de resistencia al desgaste de las piezas sometidas a la abrasión, combinando un bajo coeficiente de fricción con la resistencia a cargas elevadas. Al usar porcentajes elevados, podemos obtener un producto con una buena conductividad térmica y propiedades mecánicas superiores a las de los otros compuestos. En aplicaciones eléctricas, este material no está recomendado por no tratarse de un aislante eléctrico. Recomendado para aplicaciones de deslizamiento y rotación.

PTFE + Bisulfuro de molibdeno

Tiene la misma resistencia a cargas elevadas, pero usa MoS₂ como lubricante. Gracias a esta carga, la dureza, la rigidez y la resistencia al desgaste de PTFE mejoran de forma considerable y su influencia en las propiedades térmicas y eléctricas es casi nula.

PROPIEDADES TÉRMICAS Y MECÁNICAS

PROPIEDADES	NORMAS	UNIDADES	PTFE VIRGEN	PTFE +						
				GRAFITO 15	CARBONO 25	VIDRIO 15	VIDRIO 25	BRONCE 60	CARBONO 22 GRAFITE 3	VIDRIO 15 MoS ₂ 5
DENSIDAD	ISO 12086	g/cm³	2.14-2.18	2.15-2.18	2.08-2.12	2.18-2.20	2.20-2.24	3.85-3.95	2.06-2.11	2.22-2.25
DUREZA SHORE	DIN 53505	Sh. D	52-60	56-64	62-68	54-62	56-64	63-68	60-69	54-58
RESISTENCIA A LA TRACCIÓN (23°C)	DIN 53455	N / mm²	25-42	12-19	13-15	17-21	15-19	11-15	11-15	14-18
DEFORMACIÓN A LA RUTURA (23°C)	DIN 53455	%	250-400	130-240	40-70	250-290	220-260	110-140	60-100	200-230
MÓDULO DE ELASTICIDAD	DIN 53457	N / mm²	400-800	720	1150	1000	950	-	1250	750
RESISTENCIA A LA COMPRESIÓN 1% DEFORMACIÓN (23°C)	DIN 53454	N / mm^2	4.3	7.3	14	6.9	8.2	13	11	6.9
COEFICIENTE DE DILATACIÓN TÉRMICA (20-150°C)	-	1/K.10 ⁻⁵	12	10.5	9	10.5	10	9	8.5	10.2
COEFICIENTE DE DILATACIÓN TÉRMICA (150-260°C)	-	1/K.10 ⁻⁵	16	13.9	12	13.6	13.4	12.3	11.6	13.5
CONDUCTIVIDAD TÉRMICA (23°C)	DIN 52612	W/K.m	0.23	0.52	0.6	0.39	0.46	0.77	0.54	0.35
DEFORMACIÓN TRAS 24H A 23°C - 4	ASTM D621	%	16	9	4	13.5	12.5	4.2	6.5	12
DEFORMACIÓN TRAS 24H A 23°C - 15	ASTM D621	%	7	3.6	1.6	5	4.8	2.8	2.1	5
LIMITE PV 3 m/min	-	N/mm²m/min	2.5	21	-	20	23	21	32	25
LIMITE PV 30 m/min	-	N/mm²m/min	3.9	26	-	23	25	27	32	28
LIMITE PV 300 m/min	-	N/mm²m/min	5.5	27	-	30	31	28	35	32
COEFICIENTE DE FRICCIÓN ESTÁTICA	-	-	0.14	0.15	-	0.16	0.18	0.17	0.14	0.15
DESGASTE	-	cm³min/kg m h	78	41	-	8.3	7.1	6.1	7	8.1

PLÁSTICOS DE USO GENERAL **FICHA TÉCNICA**

4
4
1

PROPIEDADES	UNIDADES	PTFE + 25% CARBONO	PTFE + 25% FIBRA VIDRO	PTFE + 60% BRONZE
DENSIDAD	g/cm³	2.10	2.25	3.95
PROPIEDADES TÉRMICAS				
CONDUCTIVIDAD TÉRMICA	cal/s/cm/°C	15 x 10 ⁻⁴	9.5 x 10 ⁻⁴	17 × 10 ⁻⁴
COEFICIENTE DE EXPANSIÓN TÉRMICA LINEAL (23°C - 260°C)	°C	12 x 10 ⁻⁵	15 x 10 ⁻⁵	13 x 10 ⁻⁵
PROPIEDADES MECÁNICAS				
RESISTENCIA A LA TRACCIÓN	MPa	>14	>13	>10
DEFORMACIÓN A LA RUPTURA	%	>150	>250	>100
DUREZA SHORE	SHORE D		59	65
COEFICIENTE DE FRICCIÓN DINÁMICA	-	0.25	0.30	0.25
FLUIDEZ	%	9	14	8
FACTORES PRESIÓN / VELOCIDAD - P.V. (3.5m/min)	kg/cm² x m/s	550	460	650
PROPIEDADES ELÉCTRICAS				
RESISTIVIDAD VOLUMÉTRICA	Ohm x cm	10 ³	10 ¹⁶	10 ⁸
RESISTIVIDAD SUPERFICIAL	Ohm	10 ³	10 ¹⁶	108

POLY LANDELANDE EANAMAN