PSU 1000

Plástico amorfo, PSU 1000 es un material termoplástico levemente amarillo y traslúcido (cualidad no óptica), que ofrece una combinación de excelentes propiedades mecánicas, térmicas y eléctricas. Sustituye frecuentemente al policarbonato, cuando son necesarias una mayor resistencia a la temperatura, una resistencia química mejor o autoclavabilidad.

PRINCIPALES CARACTERÍSTICAS

- Alta temperatura máxima de operación al aire (150 °C en continuo)
- Buena resistencia a la hidrólisis (adecuada para la esterilización a vapor repetida)
- Alta resistencia y rigidez a lo largo de una amplia gama de temperatura
- Buena estabilidad dimensional
- Fisiológicamente inerte (composición compatible con el contacto con alimentos)
- Muy buena resistencia a la radiación de alta energía (rayos gamma y rayos X)
- Muy buen aislamiento eléctrico y propiedades dieléctricas

APLICACIONES

- Equipos para el procesamiento de alimentos (máquinas de leche, bombas, válvulas, placas para filtros, intercambiadores de calor, entre otros)
- Instrumentación analítica y todo tipo de componentes sometidos a repetidas operaciones de limpieza y esterilización
- Colectores
- Válvulas de distribución
- Componentes para equipos médicos
- Insertos para equipos de limpieza a vapor

PLÁSTICOS DE ALTO RENDIMIENTO

FICHAS TÉCNICAS

PROPIEDADES	MÉTODOS DE PRUEBA	UNIDADES	PSU 1000
COLOR	-	-	AMARILLO TRASLÚCIDO
DENSIDAD	ISO 1183-1	g/cm³	1.24
ABSORCIÓN DE AGUA			
TRAS 24/96H SUMERGIDO EN AGUA A 23°C 1	ISO 62	mg	19/38
TRAS 24/96H SUMERGIDO EN AGUA A 23°C 1	ISO 62	%	0.24/0.48
EN LA SATURACIÓN DEL AIRE A 23°C / 50% RH	-	%	0.30
EN LA SATURACIÓN DEL AGUA A 23°C	-	%	0.80
PROPIEDADES TÉRMICAS			
TEMPERATURA DE FUSIÓN (DSC, 10°C/MIN)	ISO 11357-1/-3	°C	NA
TEMPERATURA DE TRANSICIÓN DE VIDRIO (DSC, 20°C/MIN) ²	ISO 11357-1/-2	°C	190
CONDUCTIVIDAD TÉRMICA A 23°C	-	W/(K.m)	0.26
COEFICIENTE DE EXPANSIÓN TÉRMICA LINEAL			
VALOR MEDIO ENTRE 23-100°C	-	m/(m.K)	55 x 10 ⁻⁶
VALOR MEDIO ENTRE 23-150°C	-	m/(m.K)	55 x 10 ⁻⁶
VALOR POR ENCIMA DE 150°C		m/(m.K)	70 × 10 ⁻⁶
TEMPERATURA DE DEFORMACIÓN BAJO CARGA			
MÉTODO A 1.8 MPA	ISO 75-1/-2	°C	170
TEMPERATURA MÁXIMA DE OPERACIÓN EN EL AIRE			
PARA CORTOS PERIODOS ³	-	°C	180
CONTINUAMENTE (MÍNIMO DE 20 000H) ⁴	-	°C	150
TEMPERATURA MÍNIMA DE OPERACIÓN⁵	=	°C	-50
INFLAMABILIDAD ⁶			
"ÍNDICE DE OXÍGENO"	ISO 4589-1/-2	%	30
SEGÚN LA NORMA UL94 (1.5/3 MM DE ESPESOR)	-	-	HB/HB
PROPIEDADES MECÁNICAS A 23°C ⁷			
PRUEBA DE TRACCIÓN ⁸			
RESISTENCIA A LA TRACCIÓN EN EL DRENAJE/RUPTURA	ISO 527-1/-2	MPa	88/-
RESISTENCIA A LA TRACCIÓN ⁹	ISO 527-1/-2	MPa	88
RESISTENCIA A LA TRACCIÓN EN LA RUPTURAº	ISO 527-1/-2	%	10
MÓDULO DE ELASTICIDAD¹º	ISO 527-1/-2	MPa	2850
PRUEBA DE COMPRESIÓN ¹¹			
RESISTENCIA A 1/2/5 % DE DEFORMACIÓN NOMINAL ¹⁰	ISO 604	MPa	25/49/101
RESISTENCIA AL IMPACTO DE CHARPY SIN ENTALLE ¹²	ISO 179-1/1eU	KJ/m²	s/ FRATURA
RESISTENCIA AL IMPACTO DE CHARPY CON ENTALLE	ISO 179-1/1eA	KJ/m²	3.5
DUREZA POR BOLA DE ACERO ¹³	ISO 2039-1	N/mm²	115
DUREZA DE ROCKWELL ¹³	ISO 2039-2	-	M 89
PROPIEDADES ELÉCTRICAS A 23°C			
RIGIDEZ DIELÉCTRICA ¹⁴	IEC 60243-1	kV/mm	30
RESISTIVIDAD VOLUMÉTRICA	IEC 60093	Ohm.cm	> 1014
RESISTIVIDAD SUPERFICIAL	ANSI/ESD STM 11.11	Ohm/sq.	> 1013
PERMITIVIDAD RELATIVA ε : A 100HZ	IEC 60250	-	3.0
PERMITIVIDAD RELATIVA ε : A 1MHZ	IEC 60250	-	3.0
FACTOR DE DISIPACIÓN DIELÉCTRICA TAN δ : A 100HZ	IEC 60250	-	0.001
FACTOR DE DISIPACIÓN DIELÉCTRICA TAN δ : A 1MHZ	IEC 60250	-	0.003
ÍNDICE DE SEGUIMIENTO COMPARATIVO (CTI)	IEC 60112	-	150

NOTA: $1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$; $1 \text{ MPa} = 1 \text{ N/mm}^2$; 1 KV/mm = 1 MV/m

(1) Según el método 1 de la ISO 62 y fabricado en discos ø 50x3 mm (2) Los valores de esta propiedad solo se atribuyen a materiales amorfos y no a semicristalinos (3) Solo para periodos de exposición cortos (algunas horas) en aplicaciones en las que sobre el material solo se aplican cargas muy bajas. (4) Temperatura a la que resiste durante un periodo mínimo de 20 000 horas. Tras este periodo de tiempo, existe una disminución de aproximadamente un 50 % en la resistencia a la tracción, comparado con el valor original. Los valores de la temperatura dados se basan en la degradación por oxidación térmica que provoca una reducción de las propiedades. Mientras tanto, la temperatura máxima de operación permitida depende, en muchos casos, principalmente de la deducción y la magnitud de los esfuerzos mecánicos a los que está sometido el material. (5) Como la resistencia al impacto disminuye con la reducción de la temperatura, la temperatura mínima de operación permitida se determina a través de la extensión de impacto al que está sometido el material. Los valores dados se basan en condiciones de impacto desfavorables y, por ello, no se pueden considerar como los límites absolutos. (6) Estas valoraciones derivan de las especificaciones técnicas de los fabricantes de las materias primas, no permitiendo determinar el comportamiento de los materiales en condiciones de fuego. No se dispone de ninguna tarjeta amarilla UL para estos formatos. (7) La mayoría de las figuras dadas por las propiedades mecánicas de los materiales extrudidos son valores medios de las pruebas realizadas a especímenes mecanizados con ø 40-60 mm. Excepto por las pruebas de dureza, los mejores especímenes se han tomado de un área entre el diámetro del centro y el exterior, con su longitud en sentido longitudinal (paralelo al sentido de la extrusión). (8) Prueba a especímenes: cipo 1b. (9) Prueba de velocidad: 5 o 50 mm/min. (10) Prueba de velocidad: 1 mm/min.

La fuerza dieléctrica de Ketron Peek 1000 (negro) Ppsu 1000 negro pueden ser considerablemente más bajos que las figuras indicadas en la tabla que indica materiales no negros. Hay que tener en cuenta que los valores de las propiedades de la compresión moldeada de las aleaciones Duratron 4503 PAI y 4501 PAI pueden ser significativamente diferentes.

